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Automated Detection of Cell Nuclei in Pap Smear
Images Using Morphological Reconstruction

and Clustering
Marina E. Plissiti, Christophoros Nikou, Member, IEEE, and Antonia Charchanti

Abstract—In this paper, we present a fully automated method
for cell nuclei detection in Pap smear images. The locations of the
candidate nuclei centroids in the image are detected with mor-
phological analysis and they are refined in a second step, which
incorporates a priori knowledge about the circumference of each
nucleus. The elimination of the undesirable artifacts is achieved
in two steps: the application of a distance-dependent rule on the
resulted centroids; and the application of classification algorithms.
In our method, we have examined the performance of an unsuper-
vised (fuzzy C-means) and a supervised (support vector machines)
classification technique. In both classification techniques, the effect
of the refinement step improves the performance of the clustering
algorithm. The proposed method was evaluated using 38 cytologi-
cal images of conventional Pap smears containing 5617 recognized
squamous epithelial cells. The results are very promising, even in
the case of images with high degree of cell overlapping.

Index Terms—Cell nuclei detection, fuzzy C-means (FCM),
morphological reconstruction, Pap smear images, support vector
machines (SVMs).

I. INTRODUCTION

THE CORRECT interpretation of the microscopic exami-
nation of cells and tissues is crucial for the final diagnostic

decision for many diseases. One of the most interesting applica-
tion fields of microscopic screening is the detection of precursors
of cancer in cell samples. Nowadays, the most eminent example
is screening for cervical cancer in its early stages, through the
well-known Pap smear [1].

The visual interpretation of Pap smear images is a tedious,
time consuming, and in many cases an error-prone procedure.
This is a consequence of the fact that the conventional smear
exhibits uneven layering, crowding, and overlapping of cells.
Furthermore, there exist variances in illumination and dye con-
centration of the cells due to the staining procedure. Also, there
are numerous variables, such as air drying, excessive blood,
mucus, bacteria, or inflammation, which make the recognition
of the suspicious cells a difficult task.
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The large number of cells and the variation in cell types each
Pap smear image includes are also factors of complexity. There
are generally three types of squamous cells seen on Pap smear
images: 1) the superficial cells are the largest of the three and
have small pyknotic nuclei and cytoplasm that generally stains
eosinophilic (red); 2) the intermediate squamous cells, which
are similar in appearance but are slightly smaller in size and
have larger, clearly structured, round nuclei with cytoplasm that
usually stains basophilic (blue); and 3) the parabasal cell type
that is smaller, more rounded, and immature cell type.

The prerequisite for any further processing of these images is
the automated detection of cell nuclei, which presents significant
changes when the cell is affected by a disease. In pathological
situations, the nucleus may exhibit disproportionate enlarge-
ment, irregularity in form and outline, hyperchromasia, or irreg-
ular chromatin condensation. The identification and quantifica-
tion of these changes in the nucleus morphology and density
contribute in the discrimination of normal and abnormal cells.

The first attempts to detect and segment cells in cervical
microscopic images were based on image-thresholding tech-
niques [2]. In addition, pixel classification was also proposed
for the segmentation of cervical images [3]. Another class of
methods concerns morphological watersheds for the separation
of the cytoplasm and the nucleus of each cell [4], [5]. The bound-
aries of the structuring elements of the cells can be obtained by
employing methods based on active contours [6], template fit-
ting [7], [8], genetic algorithms [9], region growing with moving
K-means [10], and edge detectors [11], [12].

In Table I, the methods that have appeared in the literature
for the segmentation of Pap smear images are presented. As it
can be observed, many methods do not take advantage of the
color information of the cervical images by converting the color
image to its gray-scale counterpart [4], [6]–[12], and therefore,
missing the color information. Also, the problem of overlap-
ping cells is not considered in many methods, which identify
the borders of the nucleus and the cytoplasm in cervical im-
ages that contain only one cell or isolated cells [4], [6], [9],
[11], [12].

Considering the general methods that these approaches are
based on, we can conclude that the powerful techniques that
the mathematical morphology provides for the image segmen-
tation are not efficiently exploited. Even in the case, where mor-
phological watersheds are used in [4] and [5], these methods
seem to suffer from several limitations. The method proposed
by Bamford and Lovell [4] was applied in gray-scale images of
low resolution and results in the identification of the location
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TABLE I
ADVANTAGES AND LIMITATIONS OF STATE OF THE ART METHODS FOR PAP SMEAR CELL NUCLEI DETERMINATION

of isolated cells in each image. However, cell nuclei that are
in cell clusters are not detected. Furthermore, the method pro-
posed by Lezoray and Cardot [5] is based on pixel-classification
techniques for the detection of the nuclei markers, in order to
avoid the oversegmentation that the watershed algorithm may
produce. In pixel-classification techniques, the choice of the
number of the classes the pixels belong to plays a crucial role
for the final segmentation result. Pap smear images exhibit great
complexity and the number of pixel classes is not obvious. The
rough assumption that all the pixels of the image are distributed
into two classes, such as nuclei pixels and other pixels, would
produce noisy results.

In this paper, we propose a novel method for the automated
detection of nuclei locations in conventional Pap-stained cer-
vical cell images, which may contain both isolated cells and
cell clusters. The method exploits the particular nuclei char-
acteristics through morphological image analysis. In general,
the cell nucleus is darker than the surrounding cytoplasm [see
Fig. 1(a)]. However, its image intensity value exhibits exten-
sive variation due to the staining procedure or the type of the
cell, and sometimes it may coincide with other areas of the
image with cell overlapping [see Fig. 1(b)]. If we consider the
mapping of the image in the 3-D space [see Fig. 1(c)], we
can see that the locations of the nuclei are depicted as inten-
sity valleys. Nevertheless, not all the intensity valleys of the
same depth correspond to the location of a nucleus. As we can
see in Fig. 1(c), the points A, B, and C belong to different
intensity valleys, which approximately have the same depth.
However, only the point A belongs to the location of a true
nucleus. For the determination of the true nucleus location, the
local depth of the intensity valley must be compared with the
corresponding local depth of its surrounding area. This figure
depicts clearly that the local depth hA of the point A has higher
value than the local depths hB and hC of the points B and
C, respectively. Based on this fact, we propose an effective
method that can distinguish the nuclei locations in Pap smear
images.

Fig. 1. (a) Initial cell image. (b) Mapping of the intensity values in the color
space, where high-intensity values are represented by red and small-intensity
values are represented by blue. Point A corresponds to the location of a true
nucleus, and points B and C correspond to areas of cell overlapping. (c) Mapping
of the initial image in 3-D space. The points A, B, and C are lying in the same
intensity level but only point A corresponds to the location of a true nucleus. As
it is observed, the local depth hA of this point is more pronounced with respect
to hB and hC .

Our paper, whose shorter and preliminary version was pre-
sented in [13], consists of four phases: 1) the preprocessing; 2)
the detection of candidate cell nuclei centroids; 3) the refinement
of candidate cell nuclei centroids; and 4) the decision phase that
includes the determination of the final nuclei locations. These
phases are described in detail in the following paragraphs.

II. METHOD

A. Preprocessing

The preprocessing phase is necessary for the extraction of the
background in order to reduce the searching area in the image. In
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Fig. 2. (a) Initial Pap smear image, and (b) binary mask, which is obtained
after the preprocessing step.

the first step, for contrast enhancement and edge sharpening, the
contrast-limited adaptive histogram equalization [14] is applied
individually to each color component. Next, from each filtered
image, a binary image is produced through global thresholding
using the method proposed by Otsu [15]. Finally, in the third
step, the binary mask BW, with the regions of interest of the
image included, is given by

BW = BW1 ∪ BW2 ∪ BW3 (1)

where BW1 , BW2 , and BW3 are the binary masks in the red,
green, and blue channels of the initial image. A morphological
dilation is then performed in order to expand the boundaries of
the region of interest, i.e.,

BW = BW ⊕ X (2)

where X is a 3 × 3 flat structuring element. After this operation,
the connected components with an area smaller than the area
of an isolated cell are undesired. For this reason, we remove
all connected components with an area smaller than 500 pixels,
which is a value smaller than the area of an isolated cell (which
in general varies between 900–7000 pixels, determined empiri-
cally after careful examination by a cytopathologist) and larger
than the size of the small objects. The resulted binary image
(see Fig. 2) is used as a mask to indicate the regions, where the
detection algorithm is then applied.

B. Detection of Candidate Cell Nuclei Centroids

The areas of interest in the image obtained in the prepro-
cessing step [see Fig. 2(b)] contain either isolated cells or cell
clusters. In the last case, the high degree of cell overlap and the
inhomogeneities in the nuclei intensity make the detection of
the nuclei a difficult task.

Our approach to this problem is based on the gray-scale mor-
phological reconstruction [16] in combination with the detec-
tion of regional minima [17] in the image, which are connected
components, whose intensity value is the same and less than the
intensity value of the external boundary pixels. These minima
indicate the positions of the candidate cell nuclei.

Once we have found the regions of cell clusters, we calculate
the bounding box containing each cluster and we define the
corresponding subimage in the color image. Considering that

the nuclei are darker than the surrounding cytoplasm, in each
subimage, we search for intensity valleys in the red, green, and
blue channels of the color image. These valleys consist of pixels
with intensity value lower than a specific threshold, and they
are bounded by pixels, whose intensity value is greater than this
threshold.

For the formation of homogenous minima valleys, we apply
the h-minima transform in the original image [18]. In this way,
if the depth of each minimum is greater than or equal to a given
threshold h, then the minimum is treated as a marker, otherwise
it is eliminated. Thus, shorter peaks are removed, while higher
peaks remain, even though they are not as significant as before.

The application of h-minima transform requires the construc-
tion of a marker image G, whose peaks determine the location
of the objects of interest in the original image. A morphological
reconstruction of the original image I from marker G is then
performed. For the construction of the marker image G, we sub-
tract a threshold h from every pixel of the complement I of the
initial image of dimension DI

G(p) = I(p) − h, p ∈ DI . (3)

Following the definition in [16], the gray-scale reconstruction
is defined regarding to the elementary geodesic dilation δ

(1)
I (G)

of gray-scale image G ≤ I “under” I

δ
(1)
I (G) = (G ⊕ B) ∧ I (4)

where G ⊕ B is the dilation of G by a flat structuring element
B, and ∧ stands for the pointwise minimum. Thus, the gray-
scale geodesic dilation of size n ≥ 0 is obtained by iterating n
elementary geodesic dilations

δ
(n)
I (G) = δ

(1)
I

(
δ

(1)
I

(
δ

(1)
I . . .

(
δ

(1)
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)))

︸ ︷︷ ︸
n times

. (5)

In this equation, the output of an elementary geodesic dilation
is used as input in a new elementary geodesic dilation, and this
is repeated n times. With the aforementioned definitions, the
gray-scale reconstruction ρI(G) of image I from marker G is
obtained by iterating gray-scale geodesic dilations of G “under”
I until stability is reached

ρI (G) = lim
n→+∞

δ
(n)
I (G). (6)

The algorithm used for the construction of the final image
is described in [16]. The final image is the complement of the
outcome image and it contains the regional minima, whose depth
is less than h, suppressed [see Fig. 3(b)].

For the determination of these regional minima, we perform
the nonregional maxima suppression [17] in the complement of
the derived image. If we assume that f(x) is the input gray-scale
image, F the domain of support for f, and mval the minimum
allowed value of f , the output image g(x) is derived as follows:

1. g ← f ;
2. ∀x ∈ F ;
3. if g(x) �= mval;
4. if ∃y ∈ Nbr(x) : g(y) > f(x);
5. g(z) ← mval, ∀z ∈ Γx {w : g (w) = f(x)} ;
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Fig. 3. (a) Initial image of a cell cluster with overlapped cells, (b) resulted
image with the suppressed regional minima, (c) areas of regional minima, and
(d) centroids of the areas of regional minima.

where Nbr is the neighborhood positions associated with the
image position x, and Γx is the binary connected opening. This
algorithm sets the minimum intensity value to any pixel of the
image that does not belong to a regional maximum. If a pixel has
a neighbor of higher intensity value, then all pixels connected to
this pixel and having the same intensity are set to the minimum
allowed value (mval = 0).

The resulted binary image contains the areas of intensity val-
leys highlighted. This procedure is independently applied in the
three channels of the initial color image obtained after the pre-
processing step. The areas of valleys found in the three images
are joined using a logical OR operator. Next, the boundaries
of these valleys are calculated [see Fig. 3(c)] and the candidate
nuclei locations rc are given by the average of the boundary
pixels.

The list of pixels found in this step [see Fig. 3(d)] indicates
the locations of the candidate nuclei in the image. However,
these centroids do not coincide precisely with the true nuclei
centroids, because the boundary of the intensity valleys is rough
approximations of the real nuclei boundary. Also, as it can be
seen in Fig. 3(d), some undesired points are detected during this
step. For the detection of more accurate nuclei centroids and the
rejection of unwanted findings, further processing is needed.

C. Refinement of Candidate Cell Nuclei Centroids

In this step, a priori knowledge about the nucleus appear-
ance is incorporated for the extraction of more accurate nuclei
centroids. The nuclei usually have ellipse-like boundaries, from
which we can observe that the intensity of the pixels inside these
boundaries is lower than those lying outside. As a result, we ex-
pect high gradient of the image across the nuclei boundaries.

Nevertheless, the value of the gradient in nucleus/cytoplasm
borders varies in different parts of the image This is the reason

why edge detectors based on the selection of a threshold in the
gradient value are inappropriate for the determination of a more
precise nuclei boundary because low thresholds would result in
the detection of too many false edges, while high values would
result to the loss of some true nuclei boundaries. In this paper,
we propose the use of the morphological gradient calculated
with an alternative way for the estimation of the nuclei borders.

More specifically, from the initial color image I [see
Fig. 4(a)], we construct two different images. The first image A
[see Fig. 4(b)] is constructed from the original image I after the
application of a gray-scale erosion of the original image, i.e.,

A = I Θ X (7)

where X is a flat disk-shaped structuring element with radius 3.
The use of a disk-shaped structuring element for the construction
of the eroded image pronounce the objects of the image in such
a way that dark objects are enlarged radial. The image B [see
Fig. 4(c)] is the outcome of the application of a 5 × 5 averaging
filter on the original image. Following this procedure, noise
effects and inhomogeneities in nuclei intensity are limited and
a smoother image is extracted.

The morphological gradient J of the image I , where the
boundaries of the nuclei are accentuated, is defined as follows:

J(x, y) = |A(x, y) − B(x, y)|. (8)

In this stage, we disregard the color information of the image,
as we are interested in the determination of high-intensity differ-
ences. For the sharpening of nuclei borders, we apply a contrast
enhancement filter in the final image, which saturates 1% of
data at low and 1% of data at high intensities of the original im-
age [see Fig. 4(d)]. Finally, in the resulting gradient image, we
locally search in each derived centroid for the selection of some
points with high-intensity values, which indicate the existence
of the nucleus border.

The pixel of the initial candidate nucleus centroid is used as
starting point for the construction of a confined search space [see
Fig. 4(e)]. The searching area, in which we expect to include the
boundary of each nucleus is determined using 8-radial profiles
in equal arc length intervals consisted of 8 points each (as this
was estimated to be the average size of the nuclei radius by the
expert observer). In every radial profile, we choose the pixel with
the highest intensity (nonmaximum suppression, [see Fig. 4(f)].
This process is repeated once for each candidate nucleus.

The final step is the redefinition of the nuclei centroids based
on the resulted boundary pixels [see Fig. 4(g)]. The outcome of
the entire procedure can be observed in Fig. 4(h). This example
shows clearly that a more accurate nucleus centroid is detected.

D. Decision

The application of the method described previously for the
detection of nuclei centroids produces a number of false positive
occurrences [see Fig. 3(d)], which must be eliminated. This
can be accomplished following a decision process based on
two steps: the application of a distance-dependent rule; and the
application of classification techniques.
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Fig. 4. Illustration of the different steps of the refinement procedure. (a) Initial image, (b) eroded image, (c) filtered image, (d) contrast enhanced image of the
difference of images (b) and (c), (e) construction of the search space, (f) determination of pixels in the nucleus circumference by selecting the local maxima of the
gradient amplitude, (g) the resulted nucleus contour, and (h) the initial (black cross) and the refined (white circle) centroids of the nucleus.

Fig. 5. (a) Initial image with the detected centroids depicted with an “x”.
(b) Result of the distance-depended rule. (c) Result of the FCM, where the
positive (true nuclei) class is depicted with “+” and the negative class (other
findings) with “o”. (d) Resulted centroids of the positive class.

1) Application of the Distance-Dependent Rule: It is ob-
served that a lot of extracted points are located in small distances
between them. Even in the case of one single nucleus, the exis-
tence of more than one candidate centroid is possible, and these
candidates are generally spread into the nucleus circumference
[see Fig. 5(a)]. For this reason, for all the obtained centroids,
we apply the following rule:

repeat

∀ p = (x, y) ∈ Rc

if exists q = {(xq , yq ) |D (p, q) ≤ T}
select r = {p, q|min {I(p), I (q)}}
updateRc

until no change in Rc

where Rc is the set of all centroids, D is the Euclidean distance
between two points, T is the threshold on the minimum distance,
and I(p) is the intensity of the image at point p. The threshold
for the minimum distance that we use is derived from the prior
knowledge we have about the true diameter of a nucleus. By
applying this rule, we have a significant reduction of the total

number of the resulted centroids, while at the same time, we
have no loss of the true nuclei [see Fig. 5(b)].

2) Application of Classification/Clustering Techniques: In
the final set of the candidate nuclei centroids, we proceed with
the application of classification algorithms for the separation
of the points of true nuclei and the points that belong to other
regional minima. We have tested our method using an unsu-
pervised and a supervised classification algorithm, namely the
fuzzy C-means (FCM) [19] and the support vector machine
(SVM) [20], respectively. Given the fact that the FCM algo-
rithm does not require any training, it is independently applied
in each image. Representative results of the FCM clustering
algorithm in the real image are shown in Fig. 5(c)–(d).

For the application of the SVM classification algorithm, a
training data set is constructed by random selection of 34 im-
ages from the entire data set. The remaining four images are
used as test set. This experiment was repeated 20 times, each
time using a different (randomly selected) training set. After
training, the performance of the SVM classifier is calculated
using the unknown images of the test set. It must be noted that
in our experiments, we have used the linear and the radial basis
function (RBF) kernels.

3) Feature Vectors: For the definition of the set of nuclei
patterns, we have used the intensity information of the neigh-
borhood of the centroids. We have tested the performance of
our method using four pattern sets of different sizes for the
neighborhood, that is D1 with 3 × 3 × 3 pattern size, D2 with
5 × 5 × 3 pattern size, D3 with 7 × 7 × 3 pattern size, and D4
with 9 × 9 × 3 pattern size (the third dimension corresponds
to the color). Each pattern was centered at each centroid in the
initial color image. We have constructed two data sets of pat-
terns using as the center of the neighborhood the initial and the
refined centroids, respectively.

III. RESULTS

A. Study Group

Our data set is composed by 38 conventional Pap-stained
cervical cell images from 15 different Pap smear slides, acquired
through a CCD camera (Olympus DP71) adapted to an optical
microscope (Olympus BX51) using a 10× magnification lens.
The size of the images is 1536 × 2048 and they were stored in
JPEG format. The total number of cell nuclei in the images is
5617. In order to obtain the ground truth, the nuclei locations
were manually identified by two expert cytopathologists. The
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TABLE II
EXECUTION TIME OF THE PROPOSED METHOD FOR IMAGES OF SIZE 1536 ×

2048

Fig. 6. Rate of the true positives (true nuclei centroids detected) and false
positives for different thresholds in regional minima depth.

types of the existed cell nuclei are all the aforementioned in
Section I, and there also exist some abnormal nuclei.

B. Numerical Evaluation

For the evaluation of the performance of the method, we
have to examine the performance of the different steps of the
method. Furthermore, as a measure of the computational effi-
ciency of the segmentation method, we present in Table II the
processing times of the individual steps of the method developed
in MATLAB using a Pentium 2.0 GHz with 3 GB RAM.

The preprocessing is a fast procedure that results in the de-
termination of the parts of the image containing isolated cells
or cell clusters. It misses nine cell nuclei in all images and it
produces a reduction of true positives cell nuclei of 0.16% of the
total initial number of nuclei. The loss of this step is mainly due
to the existence of some faintly stained cell cytoplasms, which
are not distinguishable from the background. Thus, the nucleus
is removed, as it is considered to be an isolated object.

The detection step of the cell nuclei centroids successfully
identifies most of the nuclei in the image. In this step, 42 true
nuclei are missed and the true nuclei detection rate is 99.25%.
For the choice of the threshold of the depth of the intensity
valleys, we have performed several tests, and as it is depicted in
Fig. 6, with the threshold value of 15, we obtain the maximum
number of true nuclei centroids detected.

The distance-dependent rule on the refined nuclei centroids
yields in the reduction of false positive findings at the rate of
14.13%, while we have no loss of true nuclei centroids. This
rate could be higher if we select a distance threshold higher than
8 pixels. However, with a selection of a higher value for this
threshold, true nuclei centroids are missed, as it can be observed
in Fig. 7. It must be noted that if we omit this step, there will
be some centroids, which belong to the same nucleus and they
will introduce interference in the clustering step. For instance,

Fig. 7. ROC curve used for the threshold selection in distance-depended rule.

if they are classified in the same class (e.g., the nuclei class),
we will not be able to compute the number of true detected
nuclei, since one single detected nucleus will be counted twice.
Furthermore, if they are assigned to different classes, then one
centroid will be counted as true positive and the other one as false
negative. This would be wrong since both belong to the same
nucleus.

For the application of the classification algorithms, we have
used two data sets, as it is already described. In FCM algo-
rithm, we have used the Euclidean and the diagonal norm as
the distance-dependent metric. The Euclidean norm between
vectors u and v of dimension N, is defined by DEuc(u, v) =√

(u − v)T (u − v). Respectively, the diagonal norm is defined
by DDiag =

√
(u − v)T AD (u − v),where AD is a diagonal

matrix containing the standard deviations of the vectors. Fur-
thermore, the SVM classifier leads to the selection of some tens
of support vectors, depending on the type of kernel, the data set,
and the dimensions of the patterns that we use.

For the comparison of the results, we have calculated two
widely used statistical measures, the sensitivity and the speci-
ficity (our images are annotated, and the true positive and false
positive findings are automatically determined). As it is depicted
in Fig. 8(a) and (b), the FCM has higher sensitivity rate than the
SVM, which means that fewer true nuclei are missed. How-
ever, the specificity of FCM is low relatively to SVM, which
means that FCM includes a lot of false positive centroids in
the final set of the points characterized as nuclei centroids by
the algorithm. On the contrary, the sensitivity of the SVM clas-
sification is relatively low, namely, it misses more true nuclei
centroids. Nevertheless, it presents high specificity rate, which
means that in the final set of points characterized as nuclei,
the false positives are limited. An important fact that must be
noted is that in both FCM and SVM, the use of the refined
centroid data set leads to a better classification performance.
This is explained by the fact that the refined centroids are closer
to the true nuclei centroids and the produced patterns contain
more representative features of the nuclei, which results in the
improvement of the discrimination ability of the classification
techniques.

IV. DISCUSSION

The proposed method is fully automated and its application
was performed without any observer interference. The param-
eters of the several steps of the method (see Table III) were
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Fig. 8. Results of the application of the (a) FCM clustering and the (b) SVM clustering with respect to sensitivity and specificity.

TABLE III
VALUES OF THE PARAMETERS OF THE PROPOSED METHOD

computed after several experiments in 19 randomly selected
images from the entire data set containing 3616 images, and af-
terward the method was applied in all 38 images of our data set.

In Table II, the processing times of the individual steps of
the method are provided. As we can see, the execution time
significantly varies. In the regional minima step, the number of
the real cell nuclei in each image affects the execution time, and
since our images contain 26 –522 nuclei, the method exhibits
high variation in the execution time of this step. Furthermore,
the proportion of the image that is identified as background
in the preprocessing step is another factor that influences the
execution time. In an image with artifacts, severe noise and
variation in cell staining, the preprocessing step results in the
selection of some regions of the image that do not correspond to
the true location of the cell clusters. Even though in those areas
no cells are present, the regional minima detection step is also
performed in those areas, and this demands additional execution
time. This also results in the detection of false positive findings,
which affects the execution time of the distance-dependent-rule
step, because more candidate points are processed. Finally, the
variation of the execution time of these steps is affected by the
presence of outlying images that exhibit high difference from
the mean execution time, and although are a few, their influence
in the total variation is significant.

Fig. 9. Comparative results of our method and the pixel-classification schemes
proposed in [5] in terms of correct nuclei localization.

Considering the classification performances, the selection of
one of the classification techniques (FCM or SVM) depends on
the purpose of the detection of nuclei in a specific Pap smear
image. For instance, if the purpose is to find abnormal or ma-
lignant cell nuclei, the FCM is preferable, as it produces lower
loss of true nuclei and the probability of a missed abnormal
nucleus is reduced. On the other hand, if the purpose is to detect
cells nuclei in order to calculate, for example, morphological
characteristics, a pure set of true nuclei would be desirable and
the SVM classification technique is suitable, as it reduces the
false positive occurrences in the final set. However, since the
performance of SVM depends on the selected values of the pa-
rameters, its use becomes more demanding, especially when
a limited number of images exist. On the other hand, the ap-
plication of the FCM algorithm can be performed directly in
one single image. As a result and in combination with the high
performance it presents, the FCM algorithm is preferable for the
classification step of our method.

It must be noted that the artifacts and background nonunifor-
mities make the detection of false positives (and the existence of
two classes) highly probable. However, in the extreme and rare
case of having only true positive findings in the classification
step there are two possibilities. If the nuclei are homogeneous,
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TABLE IV
COMPARISON OF THE PROPOSED METHOD AND OTHER METHODS APPEARED IN THE LITERATURE

they will be assigned to the same class. If the nuclei exhibit
dissimilarities, then they would be split into two classes. More-
over, in practice, the true positive class should be indicated by
the user at the end of the procedure.

We have also compared our method with the detection meth-
ods proposed by the state of the art technique of Lezoray and
Cardot [5], which is based on the k-means clustering algo-
rithm and a Bayesian pixel-classification scheme. Following the
principles in [5], these schemes classify each pixel of the im-
ages (with the background removed) as “nuclei” or “cytoplasm”
pixel.

All the parameters of the mixture of Gaussian distributions
were calculated on a training set of color vectors from randomly
selected images of our data set (50% of the images). Then, the
Bayesian classifier was applied in the remaining images. This
experiment was repeated five times, each time with a different
(randomly selected) training set.

The outcome of both pixel-classification schemes are con-
nected components of probable nuclei locations and they are
compared with the outcome of the detection of regional minima
step in terms of how many true nuclei centroids were recognized.
The expected results would be the detection of one nucleus per
connected component. Thus, the desirable performance of each
method is a high number of connected components containing
only one nucleus. In Fig. 9, we can observe the average num-
ber of the detected connected components, over the test sets of
images, which were recognized by the compared methods. As
we can see, our method is superior to the pixel-classification
schemes, since it produces more single connected components,
which contain only one nucleus. Let us also notice that the verti-
cal axis in Fig. 9 has a logarithmic scale making the differences
in performance more pronounced.

Beyond the comparison of our method with pixel-
classification schemes, Table IV shows a comparison of our
method and other methods appeared in the literature. In gen-
eral, it is difficult to compare the methods directly since many
of them do not include quantitative results and the performance
criteria extensively vary. Furthermore, some data parameters are

not clearly defined, which are important for the evaluation of
the general behavior of each method.

From Table IV, we can assert that our method is superior for
several reasons. First, the data set that was used includes images
captured from 15 different Pap smear slides, which evince that
the data set contains a big variety of different cells, and the
obtained results describe more precisely the general behavior of
the method and the expected performance in a new image. Also,
the proposed method can be applied in images captured directly
from an optical microscope and is able to successfully recognize
the cells nuclei, even in cases, where cell overlapping is present.
Moreover, the average number of cells nuclei in these images
is 148, and they are clearly more complicated than the images
containing only isolated cells, such as in [4], [6], [9], [11],
and [12].

In terms of the general image-processing approach, the
method exploits the color information of the image, in contrary
to the techniques in [4], and [6]–[12]. This is advantageous,
since the staining process of the smear has different effects in
the three-color components of the image and some nuclei are
more distinguishable in a single-color channel. The use of three
different thresholds (one for each color channel) in the Otsu’s
method in the preprocessing step is more effective than the use
of one single threshold in the gray-scale image. Furthermore,
the detection of the intensity valleys in the three channels of
a color image and the merge of the detected regions in a final
image results in the determination of more true nuclei locations,
rather than the detection of the intensity valleys in the gray-scale
image. As we can see in Fig. 10, both the preprocessing and the
regional minima step fail to recognize the same number of the
true nuclei in the gray-scale image. The individual processing of
each color component and the combination of the results leads
in no loss of information. However, an issue that must be solved
in the future is the recognition of clustered and abnormal nuclei.

V. CONCLUSION

The task of identifying the cell nuclei in conventional Pap
smear images is a challenging issue. We have developed a
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Fig. 10. (a) Initial image. (b) Result of the preprocessing step (denoted with
the black line) in the color image. (c) Corresponding result in the gray-scale
image. (d) Part of the initial image (e) Result of the detection of regional minima
step (denoted with white lines) in the color image. (f) Corresponding result in
the gray-scale image. The missed nuclei in the gray-scale images are marked
with the arrows in both cases.

robust and accurate method for the automated identification
of the cells nuclei, which can be used as the basis for further
processing of cell images. As our image data set derives from
different Pap smear slides, the method is expected to present
high performance, when it is applied in a new Pap smear image.
The major advantage of the proposed method is that it is fully
automated and it is suitable for images with high degree of cell
overlapping, as it can successfully detect not only the nuclei of
isolated cells, but also the nuclei in cell clusters.
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